SuperTruck – Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer

Engine Systems

DOE Contract: DE-EE0003303

NETL Project Manager: Ralph Nine

William de Ojeda, PhD, PE Navistar

DOE MERIT REVIEW WASHINGTON, D.C. 16 May, 2013

National Energy Technology Laboratory Department of Energy

Project ID: ACE059

Program Overview

Goals and Objectives

- ✓ Demonstrate 50% improvement in freight efficiency
- ✓ Demonstrate 50% engine BTE
- ✓ Demonstrate path towards 55% engine BTE
- ✓ Provide a realistic technology demonstrator to reduce petroleum consumption in the truck market.

Timeline

Project Start: Feb 2010

Project End: April 2015 (50% complete)

Engine Barriers

Achieving 50% freight efficiency while balancing "Voice of Customer" needs Packaging, specifically of systems such as Waste Heat Recovery Maintaining tractor weight while adding new systems

Budget

DOF	\$37,328,933
Prime Contractor	\$51,801,146
	Prime Contractor

Total Project Cost to date DOE Funding Received \$ 20,000,000 Prime contractor \$ 21,000,000

Partners

BOSCH, Federal Mogul, Argonne National Labs, BEHR, Wisconsin Engine Research Center

Objectives and Relevance

Goals and Objectives

- 1. Demonstrate 50% improvement in freight efficiency
 - 20% through Engine technologies 30% through Vehicle technologies
- 2. Demonstrate 50% BTE on Engine Dynamometer
- 3. Demonstrate path towards 55% BTE

Relevance

- ✓ **Provide a realistic technology demonstrator** to reduce petroleum consumption in the truck market:
 - → Engine technologies closely worked with the "Voice of Customer"
 - → Attain a payback of less than 1 year for technology introduction
 - → Focus on packaging and customer interface (key in the case of Waste Heat Recovery)
- ✓ Work with Partners to develop robust products for commercial integration:
 - → High pressure common rail system (BOSCH)
 - → Advanced base engine technologies for friction reduction (Federal Mogul)
 - → Electrified systems such as cooling pump for advanced cooling system (BEHR).
- ✓ Provide innovative solutions for alternative fuels and clean combustion systems
 - → Worked with Argonne National Labs and Wisconsin Engine Research Center
 - → Provide engine demonstrator to improve engine efficiency with simplified aftertreatment system

Project Development update

Navistar completed actions by Oct 2012

- Emissions and combustion development
- Turbocompounding
- Base engine
- VVA

Navistar entered PAUSE MODE to focus on production launches (resume in 2014)

Argonne will CONTINUE working on the 55% BTE demonstration

Engine Partnerships and completed tasks

Barriers and technology roadmap

Key: ✓ high confidence to contain

* working on improving solution

System	Barriers (challenges)	Technology Roadmap	
Engine & Vehicle	Cost effectiveRobust (controls, durable)Reduced weight	Rely on analysis to select technology	✓
Engine	 High combustion efficiency with low emissions (NOx, PM) 	Improve Fuel Injection/Air Systems Advanced Combustion Regimes	*
Engine	 Modest bottoming cycle efficiency Simplified aftertreatment 	Advanced designs Close collaboration with suppliers Optimum integration to engine	✓ ✓ *
Engine	 Non optimum fuel formulation High-efficiency combustion range 	Introduce reactivity control Introduce combustion feedback Understanding of chemical kinetics	✓ ✓ *

Scope of Work

Phase II: 1 October 2011 – 30 September 2013

gress

Task	Description		Status
2.1-1	Engine and vehicle model	Integrate engine model to vehicle	80%
2.1-2	Advanced Diesel Combustion		
	Fuel System to 2900bar with Comb Fbk	Complete	100%
	WHR-TUCO	Complete	100%
	VVA	Phase II: Installed and Tested 10/12	100%
		Phase III will consider system integration	
	Aftertreatment	SCR system with >80% conversion	100%
		Phase III will report on vehicle installation	
	Friction reduction and electrification	Phase II procurement complete	80%
		Electrified components complete	
		Remain to incorporate power cylinder tests	
	Control System	Platform is built and tested	100%
2.1-3	Fuel Reactivity Engine		
	Lab/Engine/Controls Design and Build	Completed Engine and DAQ install	100%
	Testing of multi-fuels with Hdw level 1	Combustion characterization	80%

Approach Technology Selection

Approach Optimum Roadmap Towards 50% BTE

Accomplishments Engine Dyno current efficiency at 48.2% BTE

Accomplishments Friction reduction

- ✓ Phase I accomplished the predicted friction reduction.
- ✓ Phase II work will complete work with introduction of Power Cylinder Components

Accomplishments Air System / VVA

- ✓ Successfully brought the engine hardware from bench testing to engine builds
- ✓ VVA system is designed to work
 with the two stage boost
 system
- ✓ First tests show the hardware aligns to early system simulations for performance enhancements

Bench testing of VVA

VVA installation on MAXXFORCE 13

Engine tests performed at constant combustion phasing

AFR and EGR decrease as IVC is advanced

Accomplishments 55% BTE Target with Dual Fuel Engine

Engine Setup at Argonne:

- ✓ Alcohol/gasoline extended LTC load to <u>19 bar</u> BMEP
- ✓ Fuel-bound oxygen led to soot reduction
- ✓ improved fuel efficiency: best BTE: 45.1%

Significant improvement on BTE with fuel reactivity at <u>better controlled engine out</u> <u>emissions</u>

Accomplishments

Current target is 47% BTE with engine and fuels

Additional efficiency will be accounted by other technologies

Remaining Activities for 2013

I. No activities at Navistar owing to PAUSE mode until 2014

II. Activities will continue at ARGONNE

- Complete testing of fuel reactivity matrix
- Upgrades:
 - Higher Compression Ratio
 - Installation of VVA engine
- Impact of Effective Compression ratio on load extension

Project Summary

- I. To date the following technologies have been incorporated:
 - ✓ On engine combustion, leading to a growth in BTE from 42 to 45%:
 - Extended peak cylinder pressure capability (190→220 bar)
 - Higher injection pressure (2200→2900 bar)
 - ✓ On heat recovery, leading to a further increase to 46.5%:
 - Electrical turbo-compounding with advance air system
 - Transferred to vehicle
 - ✓ Base components, lube and cooling, were updated raising efficiency to 47.2%
 - Power cylinder components were procured. Documentation will be postponed to 2014
 - ✓ VVA engine was commissioned and early tests indicate BTE increase to 48.2%.
- II. Advanced 55% BTE demonstrator is operational at ANL
 - ✓ Reactivity studies performed with gasoline and alcohol fuels
 - High engine efficiencies were compatible with very reduced engine emissions
 - Study will continue with enabling features recently added such as VVA